一、選擇題
1.函數(shù)y=(x+1)2(x-1)在x=1處的導數(shù)等于()
A.1 B.2
C.3 D.4
[答案] D
[解析] y=[(x+1)2](x-1)+(x+1)2(x-1)
=2(x+1)(x-1)+(x+1)2=3x2+2x-1,
y|x=1=4.
2.若對任意xR,f(x)=4x3,f(1)=-1,則f(x)=()
A.x4 B.x4-2
C.4x3-5 D.x4+2
[答案] B
[解析] ∵f(x)=4x3.f(x)=x4+c,又f(1)=-1
1+c=-1,c=-2,f(x)=x4-2.
3.設函數(shù)f(x)=xm+ax的導數(shù)為f(x)=2x+1,則數(shù)列{1f(n)}(nN)的前n項和是()
A.nn+1 B.n+2n+1
C.nn-1 D.n+1n
[答案] A
[解析] ∵f(x)=xm+ax的導數(shù)為f(x)=2x+1,
m=2,a=1,f(x)=x2+x,
即f(n)=n2+n=n(n+1),
數(shù)列{1f(n)}(nN)的前n項和為:
Sn=112+123+134+…+1n(n+1)
=1-12+12-13+…+1n-1n+1
=1-1n+1=nn+1,
故選A.
4.二次函數(shù)y=f(x)的圖象過原點,且它的導函數(shù)y=f(x)的圖象是過第一、二、三象限的一條直線,則函數(shù)y=f(x)的圖象的頂點在()
A.第一象限 B.第二象限
C.第三象限 D.第四象限
[答案] C
[解析] 由題意可設f(x)=ax2+bx,f(x)=2ax+b,由于f(x)的圖象是過第一、二、三象限的一條直線,故2a0,b0,則f(x)=ax+b2a2-b24a,
頂點-b2a,-b24a在第三象限,故選C.
5.函數(shù)y=(2+x3)2的導數(shù)為()
A.6x5+12x2 B.4+2x3
C.2(2+x3)2 D.2(2+x3)3x
[答案] A
[解析] ∵y=(2+x3)2=4+4x3+x6,
y=6x5+12x2.
6.(2010江西文,4)若函數(shù)f(x)=ax4+bx2+c滿足f(1)=2,則f(-1)=()
A.-1 B.-2
C.2 D.0
[答案] B
[解析] 本題考查函數(shù)知識,求導運算及整體代換的思想,f(x)=4ax3+2bx,f(-1)=-4a-2b=-(4a+2b),f(1)=4a+2b,f(-1)=-f(1)=-2
要善于觀察,故選B.
7.設函數(shù)f(x)=(1-2x3)10,則f(1)=()
A.0 B.-1
C.-60 D.60
[答案] D
[解析] ∵f(x)=10(1-2x3)9(1-2x3)=10(1-2x3)9(-6x2)=-60x2(1-2x3)9,f(1)=60.
8.函數(shù)y=sin2x-cos2x的導數(shù)是()
A.22cos2x- B.cos2x-sin2x
C.sin2x+cos2x D.22cos2x+4
[答案] A
[解析] y=(sin2x-cos2x)=(sin2x)-(cos2x)
=2cos2x+2sin2x=22cos2x-4.
9.(2010高二濰坊檢測)已知曲線y=x24-3lnx的一條切線的斜率為12,則切點的橫坐標為()
A.3 B.2
C.1 D.12
[答案] A
[解析] 由f(x)=x2-3x=12得x=3.
10.設函數(shù)f(x)是R上以5為周期的可導偶函數(shù),則曲線y=f(x)在x=5處的切線的斜率為()
A.-15 B.0
C.15 D.5
[答案] B
[解析] 由題設可知f(x+5)=f(x)
f(x+5)=f(x),f(5)=f(0)
又f(-x)=f(x),f(-x)(-1)=f(x)
即f(-x)=-f(x),f(0)=0
故f(5)=f(0)=0.故應選B.
二、填空題
11.若f(x)=x,(x)=1+sin2x,則f[(x)]=_______,[f(x)]=________.
[答案] 2sinx+4,1+sin2x
[解析] f[(x)]=1+sin2x=(sinx+cosx)2
=|sinx+cosx|=2sinx+4.
[f(x)]=1+sin2x.
12.設函數(shù)f(x)=cos(3x+)(0<),若f(x)+f(x)是奇函數(shù),則=________.
[答案] 6
[解析] f(x)=-3sin(3x+),
f(x)+f(x)=cos(3x+)-3sin(3x+)
=2sin3x++56.
若f(x)+f(x)為奇函數(shù),則f(0)+f(0)=0,
即0=2sin+56,+56=kZ).
又∵(0,),6.
13.函數(shù)y=(1+2x2)8的導數(shù)為________.
[答案] 32x(1+2x2)7
[解析] 令u=1+2x2,則y=u8,
yx=y(tǒng)uux=8u74x=8(1+2x2)74x
=32x(1+2x2)7.
14.函數(shù)y=x1+x2的導數(shù)為________.
[答案] (1+2x2)1+x21+x2
[解析] y=(x1+x2)=x1+x2+x(1+x2)=1+x2+x21+x2=(1+2x2)1+x21+x2.
三、解答題
15.求下列函數(shù)的導數(shù):
(1)y=xsin2x;(2)y=ln(x+1+x2);
(3)y=ex+1ex-1;(4)y=x+cosxx+sinx.
[解析] (1)y=(x)sin2x+x(sin2x)
=sin2x+x2sinx(sinx)=sin2x+xsin2x.
(2)y=1x+1+x2(x+1+x2)
=1x+1+x2(1+x1+x2)=11+x2 .
(3)y=(ex+1)(ex-1)-(ex+1)(ex-1)(ex-1)2=-2ex(ex-1)2 .
(4)y=(x+cosx)(x+sinx)-(x+cosx)(x+sinx)(x+sinx)2
=(1-sinx)(x+sinx)-(x+cosx)(1+cosx)(x+sinx)2
=-xcosx-xsinx+sinx-cosx-1(x+sinx)2.
16.求下列函數(shù)的導數(shù):
(1)y=cos2(x2-x); (2)y=cosxsin3x;
(3)y=xloga(x2+x-1); (4)y=log2x-1x+1.
[解析] (1)y=[cos2(x2-x)]
=2cos(x2-x)[cos(x2-x)]
=2cos(x2-x)[-sin(x2-x)](x2-x)
=2cos(x2-x)[-sin(x2-x)](2x-1)
=(1-2x)sin2(x2-x).
(2)y=(cosxsin3x)=(cosx)sin3x+cosx(sin3x)
=-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.
(3)y=loga(x2+x-1)+x1x2+x-1logae(x2+x-1)=loga(x2+x-1)+2x2+xx2+x-1logae.
(4)y=x+1x-1x-1x+1log2e=x+1x-1log2ex+1-x+1(x+1)2
=2log2ex2-1.
17.設f(x)=2sinx1+x2,如果f(x)=2(1+x2)2g(x),求g(x).
[解析] ∵f(x)=2cosx(1+x2)-2sinx2x(1+x2)2
=2(1+x2)2[(1+x2)cosx-2xsinx],
又f(x)=2(1+x2)2g(x).
g(x)=(1+x2)cosx-2xsinx.
18.求下列函數(shù)的導數(shù):(其中f(x)是可導函數(shù))
(1)y=f1x;(2)y=f(x2+1).
[解析] (1)解法1:設y=f(u),u=1x,則yx=y(tǒng)uux=f(u)-1x2=-1x2f1x.
解法2:y=f1x=f1x1x=-1x2f1x.
(2)解法1:設y=f(u),u=v,v=x2+1,