高中所有數(shù)學(xué)公式整理【必背】

思而思學(xué)網(wǎng)

高中必背88個數(shù)學(xué)公式??圓的公式

1、圓體積=4/3(pi)(r^3)

2、面積=(pi)(r^2)

3、周長=2(pi)r

4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】

5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

高中必背88個數(shù)學(xué)公式??橢圓公式

1、橢圓周長公式:l=2πb+4(a-b)

2、橢圓周長定理:橢圓的周長等于該橢圓短半軸,長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.

3、橢圓面積公式:s=πab

4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個公式都是通過橢圓周率t推導(dǎo)演變而來。

高中必背88個數(shù)學(xué)公式??兩角和公式

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

高中必背88個數(shù)學(xué)公式??倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

高中必背88個數(shù)學(xué)公式??半角公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

高中必背88個數(shù)學(xué)公式??和差化積

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

高中必背88個數(shù)學(xué)公式??等差數(shù)列
1、等差數(shù)列的通項公式為:
an=a1+(n-1)d(1)
2、前n項和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項為0.
在等差數(shù)列中,等差中項:一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項.
,
且任意兩項am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式.
3、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.
和=(首項+末項)項數(shù)÷2
項數(shù)=(末項-首項)÷公差+1
首項=2和÷項數(shù)-末項
末項=2和÷項數(shù)-首項
項數(shù)=(末項-首項)/公差+1

高中必背88個數(shù)學(xué)公式??等比數(shù)列
1、等比數(shù)列的通項公式是:An=A1q^(n-1)
2、前n項和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意兩項am,an的關(guān)系為an=am?q^(n-m)
3、從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1?an=a2?an-1=a3?an-2=…=ak?an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N,則有:ap?aq=am?an,
等比中項:aq?ap=2arar則為ap,aq等比中項.
記πn=a1?a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數(shù)的等比數(shù)列各項取同底數(shù)數(shù)后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的.
性質(zhì):①若m、n、p、q∈N,且m+n=p+q,則am?an=apaq;
②在等比數(shù)列中,依次每k項之和仍成等比數(shù)列.
“G是a、b的等比中項”“G^2=ab(G≠0)”.
在等比數(shù)列中,首項A1與公比q都不為零.

高中必背88個數(shù)學(xué)公式??拋物線

1、拋物線:y=ax+bx+c就是y等于ax的平方加上bx再加上c。

a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經(jīng)過原點;b=0時拋物線對稱軸為y軸。

2、頂點式y(tǒng)=a(x+h)+k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標(biāo)的x,k是頂點坐標(biāo)的y,一般用于求最大值與最小值。

3、拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標(biāo)為(p/2,0)。

4、準(zhǔn)線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。

熱門推薦

最新文章